一、计数排序
其基本思想为:假设n个输入的元素中的每一个都是在0到k之间的一个整数,对于每一个输入元素x,确定小于x的元素个数,直接把x放在它输出的数组中的位置上。例如有17个元素小于x,则x就应该在数组的第18个位置上。当有几个元素相同时,这一方案就要略作修改,不能都放在同一个位置上。
计数排序需要提供两个辅助数组用来计数,一个用来保存已经排好序的元素,一个用来保存每个元素在数组中出现的次数。计数排序是不稳定的排序算法,时间复杂度(n),空间复杂度是O(n + k),其中k
是排序数组元素的范围。
例如以下数组A:
在通过计数后,得到的辅助数组C为:
对于元素1
而言,它前面有两个0
,因此排序后它的位置在第三个,即下标为2
的位置上,但是它的数量为0,就不应该给他排序。而元素2
是有的,它的位置应该是0
的数量和1
的数量(如果有元素1的话)之和的后面一位,在这里是第3位,下标为2。这里类似斐波那契数列:每个元素都等于前面两个的和。
因此,有必要对辅助数组C做处理,设置其所在的位置为前面所有元素数量之和,这样就不用每次都重新计算前面的数量了(参考斐波那契数列计算):
要注意的是,对于2
这个元素来说,它出现了两次,如果不做特殊处理,它们处的位置都是第四个位置。要想办法把两个2
分别放到自己合适的位置上去。可以采取的办法是从后往前排序,每排完一个数字,当前数字的值减一。
图例:
第一步,A的最后一个元素是3,得到C[3]的值为7,把3先放到第7个位置,并把C[3]的值减一:
第二步,现在A的最后一个元素(未排序的)是0,得到C[0]为2,放到第二个位置,C[0]减一:
第三步,重复以上步骤,直到A中所有的元素都排序完毕:
此时,整个数组就是有序的了。
二、计数排序的代码实现
// 数据可能出现的最大值
const unsigned int max_val = 100;
void count_sort(int data[], const unsigned int n) {
// 计数数组
int cnt[max_val] = {0};
// 生成辅助数组
int *tmp = new int[n];
unsigned int i;
// 初始化计数数组
for (i = 0; i < n; i++) {
cnt[data[i]]++;
}
// 累加所有的数量
for (i = 1; i < max_val; i++) {
cnt[i] += cnt[i - 1];
}
// 计数排序
for (i = n - 1; i >= 0 && i < n; i--) {
tmp[cnt[data[i]] - 1] = data[i];
cnt[data[i]]--;
}
// 拷贝辅助数组到排序数组
for (i = 0; i < n; i++) {
data[i] = tmp[i];
}
}
此处评论已关闭